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Hierarchical clustering is a well-known method of multivariate data analysis. It is used to identify 
groups of objects (e.g. sites) that are more similar within than among the groups. In R, at least three 
functions propose the Lance & Williams (1966, 1967) general agglomerative clustering method: 
hclust.R in {stats}, agnes.R in {cluster} and constr.hclust.R in {adespatial}. This method 
implements most commonly-used methods of agglomerative clustering through a unified algorithm. 
Before hierarchical clustering, one must compute a dissimilarity matrix D among the objects from 
the response data matrix Y of interest. The dissimilarity measure is chosen with respect to the 
mathematical nature of the data, e.g. {quantitative, presence-absence, qualitative}, and the type of 
information one wishes the clustering method to represent. 

For some problems involving sites observed in geographic space, one may want to divide the study 
area (map) into groups of sites that are geographically connected to one another in addition to 
having similar vectors of response variables. The geographic information must be incorporated in 
the cluster analysis, in addition to the information from the dissimilarity matrix D computed from Y. 
Several authors have independently proposed to use constraints of contiguity in spatial clustering, 
including Lefkovitch (1978, 1980), Monestiez (1978), Lebart (1978), Roche (1978), Perruchet 
(1981) and Legendre & Legendre (1984). Reviews of constrained classification methods are found 
in Gordon (1980, 1996), Murtagh (1985) and Legendre (1987). 

A constrained clustering analysis comprises four steps: 

1. Compute a dissimilarity matrix D among the sites, which are the rows of the response data matrix 
Y of interest. For community ecologists, matrix Y often contains community composition data. 

2. Choose a connecting scheme among the sites and produce a list of link edges forming matrix E. 

3. Carry out constrained clustering using D as the response dissimilarity matrix and E as the spatial 
or temporal contiguity constraint. 

4. Select a number of groups, k. Represent the clustering results on a map. Obtain a list of the 
objects members of the groups and perhaps also a dendrogram. 

The classification of the objects (sites or time points) into groups may be interpreted using 
explanatory variables like geographic, geomorphological, or environmental variables, using RDA, 
multivariate regression tree analysis, or discriminant analysis. The procedure and functioning of 
constrained hierarchical clustering is summarized in Figure 1. 

1. Compute a dissimilarity matrix D among the sites 

The dissimilarity function must be chosen as a function of the mathematical nature of the data, of 
their ecological nature (e.g. frequencies of organisms or physical variables), and of the objective of 
the study. See the course segment on “Dissimilarity and transformations”.  
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2. Prepare the matrix of edges E 

In graph theory, an edge is a line connecting two points in a graph. Points are also called vertices or 
nodes. An edge may also be called a link or a line, although the word link may be restricted to 
designate an edge that has distinct end vertices. Traditionally, a set of edges is called E. In 
undirected graphs, an edge is described by an unordered pair of points; edges don’t have directions 
in this type of graph.  

The simplest way to build a matrix of edges E, for small data sets (say, up to 50 points), is to write it 
by hand in a text editor or a spreadsheet. 

• Write a data frame with two columns in which each row represents an edge of the connexion 
diagram (see example below).  

• In the list of edges, the points are represented by numerals corresponding to the positions of these 
points in data matrix Y. Examples: the first site in matrix Y is called 1 in data frame E, whatever its 
real identifying label, and the 25th site in the list is called 25.  Do not use site labels, e.g. {"SiteA", 
"SiteB", "SiteC"}, to describe edges unless the site labels are the same as the site positions in Y. The 
site numerals used in edge matrix E must follow the order of the objects in matrix Y.  

• An edge is represented by two numbers, for example 3 and 15. The order of these numerals in the 
first or second column does not matter. It is also useless to repeat the edges, placing the numerals in 
the inverse order, for example [3 8] followed by [8 3].  

As an example, the following edge matrix E represents the Delaunay triangulation in Figure 1c: 

from to 
1 2 
1 3 
1 4 
2 3 
2 5 
2 9 
3 4 
3 5 
3 6 
4 6 
4 7 
5 6 
5 8 
5 9 
6 7 
6 8 
7 8 
7 9 
8 9 

Note that the order of the objects in data file Y, shown in Figure 1a, has to correspond to the object 
numbers in E, for the software to interpret correctly the relationships between the list of objects in Y 
and the edges in E. However, edges may be listed in any order in matrix E. In this example, the 
object labels (1 to 9) are also the object input order. The object labels could be different, e.g. 
“Site.z”, “Site.p”, “Site.x”, etc.  
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Another example of a data frame representing a matrix E is provided in folder “Chesapeake-Data” 
of the Chesapeake Bay exercises of this course. The file is called E50. 

It is not necessary to include rownames in that file; although they were added for elegance in matrix 
E50. For column names, “from” and “to” are traditionally used to make the file understandable by 
other researchers, but any column names may be used, or none at all; they are not read or used by 
the function. 

For larger data sets, containing sites at random positions or forming regular grids, Dray (2020) wrote 
an extensive tutorial, which clearly explains how to proceed to generate matrix E for regular grids of 
points, or for irregularly placed sites on geographic surfaces. See section 2 of the tutorial, “Building 
spatial neighbourhood”. To access the tutorial, type 

 library(adespatial) 
  vignette("tutorial", "adespatial") 

and export the tutorial to a pdf file. In the tutorial, the neighbourhood data frames E are generated 
by specialized functions of the {spdep} package. 

In the case of a spatial transect or a time series, one does not have to create matrix E explicitly. If 
the software allows it (this is the case with function constr.hclust.R), this task will be done by the 
constrained clustering software, which will assume that the sites along the transect, or the 
observations along the time series, are listed in Y according to their positions in the sequence. 

3. Carry out constrained clustering analysis 

The constrained clustering algorithm described in Figure 1 is implemented in the R function 
constr.hclust.R of {adepsatial}. This algorithm was originally developed by computer scientist Alain 
Vaudor at Université de Montréal for the fish postglacial dispersal study published by Legendre & 
Legendre (1984). The original algorithm (called BioGeo) only implemented hierarchical 
agglomerative proportional-link linkage clustering with constraint of spatial contiguity. On output, 
the agglomerative clustering steps were represented in the form of maps. The algorithm was 
generalized to the Lance & Williams algorithm in Legendre & Legendre (2012, section 13.3.2). 
From 2011 to 2020, this algorithm was implemented in successive function versions, called 
const.clust.R (in R language) by P. Legendre and constr.hclust.R (with functions for intensive 
calculation coded in C) by G. Guénard. The procedure is described in Guénard & Legendre (2021). 
The algorithm is described in the extended caption of Figure 1 of the present paper. 

The constr.hclust.R function produces an output object with classes "constr.hclust" and "hclust". 
This output object can readily be used by function plot.hclust of {stats} to produce a dendrogram. 
The resulting dendrogram is likely to present reversals, i.e. instances where the fusion distance at a 
clustering step is lower than that of the previous step. Reversals produce dendrograms that are not 
monotonic, or fully nested. Reversals may also be produced in ordinary hierarchical cluster analysis. 
Their generation is explained in Legendre & Legendre (2012, section 8.6). – For constrained 
clustering, Ferligoj & Batagelj (1982) showed that the introduction of relational constraints, e.g. 
spatial contiguity, in the clustering algorithm may produce reversals with any of the hierarchical 
clustering methods included in the Lance & Williams algorithm, except complete linkage. 

Constrained clustering can also be applied to time series of univariate or multivariate data. An 
example is shown in the “Practical in R, Chesapeake Bay data”, section 4.2.2. 
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4. An example of spatially-constrained clustering 

A simple artificial example presented in the Guénard & Legendre (2012) paper will be used to 
illustrate the calculation of spatially constrained clustering. The data, illustrated in Figure 2, are the 
following: 

# For simplicity of the example, matrix Y only contains one response variable 
var = c(1.5, 0.2, 5.1, 3.0, 2.1, 1.4) 
ex.Y = data.frame(var) 

# Site coordinates, matrix xy 
x.coo = c(-1, -2, -0.5, 0.5, 2, 1) 
y.coo = c(-2, -1, 0, 0, 1, 2) 
ex.xy = data.frame(x.coo, y.coo) 

# Matrix of connecting edges E 
from = c(1,1,2,3,4,3,4) 
to = c(2,3,3,4,5,6,6) 
ex.E = data.frame(from, to) 

Note how some possible adjacency edges, i.e. those between sites (1, 4), (1, 5), (2, 6) and (5, 6), 
were not incorporated in the matrix of edges E because these edges cross land masses. The list of 
edges can be customized in order to adapt it to the analysis to particularities of the landscape or to 
particular ecological hypotheses to be tested. Here the objective was to group aquatic sites on the 
basis of some underwater characteristic, like sediment characteristics or faunal composition. 

 

# Carry out constrained clustering analysis – 

library(adespatial) 

cclust.out <- 
constr.hclust( 

dist(ex.Y),  # Response dissimilarity matrix 
method="ward.D2", # Clustering method1 
links=ex.E,  # File of link edges (constraint) E 
coords=ex.xy) # File of geographic coordinates 

# Plot the results for 2 to 5 spatially-constrained clusters (Figure 3) 

par(mfrow=c(1,2)) 
plot(cclust.out,k=2,links=TRUE,xlab="X (km)",ylab="Y (km)",cex=1.5) 
plot(cclust.out,k=3,links=TRUE,xlab="X (km)",ylab="Y (km)",cex=1.5) 

par(mfrow=c(1,2)) 
plot(cclust.out,k=4,links=TRUE,xlab="X (km)",ylab="Y (km)",cex=1.5) 
plot(cclust.out,k=5,links=TRUE,xlab="X (km)",ylab="Y (km)",cex=1.5) 

  

                                                
1 Ward’s minimum variance method selected here (method="ward.D2") is a general-purpose clustering 
method optimizing Ward’s least-squares criterion. Method "ward.D2" (default value in constr.hclust.R) 
implements the Ward clustering criterion, whereas method "ward.D" does not (Murtagh and Legendre, 
2014). See also the documentation file of {stats} function hclust.R. 
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# Produce numeric vectors describing the partition of the sites into k groups 

( k2.groups = as.numeric(cutree(cclust.out, k=2)) ) 
# [1] 1 1 2 2 2 2 
( k3.groups = as.numeric(cutree(cclust.out, k=3)) ) 
# [1] 1 1 2 3 3 3 
( k4.groups = as.numeric(cutree(cclust.out, k=4)) ) 
# [1] 1 1 2 3 3 4 
( k5.groups = as.numeric(cutree(cclust.out, k=5)) ) 
# [1] 1 2 3 4 4 5 
 
# Unconstrained clustering solution 

hclust.out = hclust(dist(ex.Y), method="ward.D2") 

 
# Produce dendrograms for the constrained (left) and unconstrained (right) solutions (Figure 4) 

par(mfrow=c(1,2)) 
stats:::plot.hclust(cclust.out, hang=-1) 
plot(hclust.out, hang=-1) 

The two dendrograms are very different yet they are both mathematically correct. The constrained 
clustering solution (left) describes a geographic partition of the map into groups of contiguous 
points that are fairly similar in the values of the variable in file ex.Y. The unconstrained solution 
(right) simply partitioned the points according to the values of the variable, without attempt to take 
geography into account. 
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Figure 1 – Summary of the spatially-constrained clustering procedure. It is applicable to any 
clustering method compatible with the Lance & Williams agglomerative clustering algorithm.  
• Arrow from (a) to (b) – The data matrix Y (data file in panel a) is used to compute a dissimilarity 
matrix. Here the site-by-site resemblance is expressed by a similarity matrix S, where sij = 1 – dij ; 
the reason is explained below. 

• Arrow from (c) to (d) – The graph edges of the Delaunay triangulation (c) are written to matrix E 
(shown in section 2 of the main text), which is used to generate the contiguity matrix (d). 

• Matrix(e) = Matrix(b) * Matrix(d), where “ * ” designates the Hadamard product, or cell-by-cell 
product, of two matrices. Similarities are used in (b) instead of dissimilarities in order to make the 
Hadamard product create zeros in (e) for pairs of unconnected sites; these sites are not connected by 
an edge in (c) and have contiguity of 0 in (d). Zeros in (e) mean “not connected” and “do not 
cluster”. The use of similarities in (b) and (e) avoids the confusion with a value dij of zero, which 
could be a legitimate value. Grey squares in (e) designate the connected pairs of points in graph (c). 

• Vector (f) – Objects are labelled 1 to 9 in this example. At the start of the clustering process, each 
object is labelled as a separate group in vector (f).  

• Constrained clustering – Among the grey squares in (e), the one showing the highest similarity 
determines the next fusion of objects or groups. The group membership vector (f) is then updated by 
attributing the same identifier to the two objects or groups that have clustered.  
• Matrices (b) and (d) are also updated to account for that fusion. In (b), cell fusions are computed 
following the Lance & Williams general agglomerative formula. In (d), the contiguities are updated 
by the rule that any point that was connected to one of the two points that have clustered is now 
connected to the new row and column representing the new cluster of points. 
• Matrix (e) is recomputed, ready for the next fusion of objects or groups. 

1  2  3  4  5  6  7  8  9

1      1  1  1  0  0  0  0  0

2         1  0  1  0  0  0  1

3            1  1  1  0  0  0

4               0  1  1  0  0

5                  1  0  1  1

6                     1  1  0

7                        1  1

8                           1

9

Contiguity matrix

1      1  1  1  0  0  0  0  0

2         1  0  1  0  0  0  1

3            1  1  1  0  0  0

4               0  1  1  0  0

5                  1  0  1  1

6                     1  1  0

7                        1  1

8                           1

9

Similarity matrix used
for constrained clustering

1  2  3  4  5  6  7  8  9

Sites
1
2
3
4
5
6
7
8
9

Descriptors
---  ---  ---  ---  ---  ---
---  ---  ---  ---  ---  ---
---  ---  ---  ---  ---  ---
---  ---  ---  ---  ---  ---
---  ---  ---  ---  ---  ---
---  ---  ---  ---  ---  ---
---  ---  ---  ---  ---  ---
---  ---  ---  ---  ---  ---
---  ---  ---  ---  ---  ---

Data file

Similarity matrix

1  2  3  4  5  6  7  8  9
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Figure 2 – Artificial example of Guénard & Legendre (2021, Figure 2) illustrating spatially-
constrained clustering. The grey areas represent unsuitable habitats, like land masses in a study of 
aquatic ecosystems, or the converse, water masses in a study of the dispersion of terrestrial ground-
dwelling (i.e. non-flying) organisms. 
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Figure 3 –Constrained clustering maps for the artificial example of Guénard & Legendre (2021). 
Top: k=2 and k=3 groups. Bottom: k=4 and k=5 groups. Colours may sometimes look fairly similar. 

 

 
Figure 4 – Dendrograms for the constrained (left) and unconstrained (right) solutions. 
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